FREE-AIR SUM MARY

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sum-free Sets of Integers

A set S of integers is said to be sum-free if a, b e 5 implies a + b 6 S. In this paper, we investigate two new problems on sum-free sets: (1) Let f(k) denote the largest positive integer for which there exists a partition of (1, 2,... ,f(k)) into k sum-free sets, and let h(k) denote the largest positive integer for which there exists a partition of {1, 2, . . . , h(k)) into k sets which are su...

متن کامل

Counting Generalized Sum-free Sets

We show that the number of subsets of {1, 2, ..., n} with no solution to x1+x2+ ...+xk = y1+y2+ ..+yl for k ≥ 4l−1 is at most c2 where θ = k−l k .

متن کامل

Generalized Sum - Free Subsets 751

Let F {A(1): < i < t, t 2}, be a finite collection of finite, palrwlse disjoint subsets of Z+. Let SC R\{0} and A Z+ be finite sets. Denote by S A {i=isi:a A, i S, the s i are not ncesarily dlstinct }. For S and F as above we say that S is F-free if for every A(i), A(J) F, i J, SA(1)(% SA(j) . We prove that for S and F as above, S contains an F-free subset Q such that This result generalizes ea...

متن کامل

Small Maximal Sum-Free Sets

Let G be a group and S a non-empty subset of G. If ab / ∈ S for any a, b ∈ S, then S is called sum-free. We show that if S is maximal by inclusion and no proper subset generates 〈S〉 then |S| ≤ 2. We determine all groups with a maximal (by inclusion) sum-free set of size at most 2 and all of size 3 where there exists a ∈ S such that a / ∈ 〈S \ {a}〉.

متن کامل

Zero-sum free sets with small sum-set

Let A be a zero-sum free subset of Zn with |A| = k. We compute for k ≤ 7 the least possible size of the set of all subset-sums of A.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Weather Review

سال: 1923

ISSN: 0027-0644,1520-0493

DOI: 10.1175/1520-0493(1923)51<663b:fsm>2.0.co;2